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We address two questions that are central to understanding human motor control variability: what kind of
dynamical components contribute to motor control variability �i.e., deterministic and/or random ones�, and how
are those components structured? To this end, we derive a stochastic order parameter equation for isometric
force production from experimental data using drift-diffusion estimates. We show that the force variability
increases with the required force output because of a decrease of deterministic stability and an accompanying
increase of noise intensity. A structural analysis reveals that the deterministic component consists of a linear
control loop, while the random component involves a noise source that scales with force output. In addition, we
present evidence for the existence of a subject-independent overall noise level of human isometric force
production.
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I. INTRODUCTION

Variability is a fundamental feature of human motor con-
trol �1� and has been studied in a wide variety of contexts,
including tremor �2–4�, postural sway �5–12�, pupil dynam-
ics �13–15�, balancing �16�, stationary pointing �17�, isomet-
ric force production �18,19�, and coordinated movement. In
the last context, variability of both discrete goal-directed
movements �20� and rhythmic movements �21–29� has been
examined.

In studying the emergence of motor control variability,
two key issues have to be addressed. The first issue is about
the nature of the dynamical processes that give rise to motor
control variability. Does motor control variability originate
from deterministic or random processes? In the former case,
an increase of variability may be related to the decrease of
the strength of a deterministic attractor. In the latter case,
motor control variability scales with the amplitude of fluctu-
ating forces. The necessity to introduce fluctuating forces
into the description of a motor control system usually implies
that there is another, more microscopic, level of description
that is relevant besides the current level of description. The
net effect of all forces originating from this more micro-
scopic level can be regarded as a fluctuating force acting on
the current level of description �30�. The second issue is a
quantitative one and concerns the problem how to quantify
the deterministic and random parts of motor control systems
that are putatively involved in the emergence of motor con-
trol variability. Are linearized deterministic models sufficient
or does the problem at hand require an account in terms of
nonlinearities? Are we confronted with additive or multipli-
cative noise sources �probably related to power law distribu-
tions �31,32��? Several multiplicative noise motor control
systems have been identified so far: the pupil dynamics
�13–15�, stick balancing �16�, and pointing movements �17�.
Moreover, arguments referring to both the structural level
�e.g., motoneuron populations �33�� and the conceptual level
�34� support the relevance of multiplicative noise sources for

human motor control. Multiplicative noise systems are of
particular interest because in this type of systems variability
does not only act as a perturbing mechanism but often con-
tributes to system functionality. For example, multiplicative
noise might help to prevent neurophysiological systems from
exhibiting unstable oscillations by shifting critical control
parameters to higher magnitudes �15�. Multiplicative noise
might also support the functioning of motor performance by
stabilizing the systems on time scales shorter than reaction
time scales �16�. In this context it may also be noted that
variability in general might be useful for exploring task
spaces and performing explorative movements �5,6� includ-
ing the exploitation of stochastic resonance for the purpose
of postural stabilization�12�.

In the following, we will address the aforementioned is-
sues concerning �i� the nature and �ii� the structure of the
dynamical processes involved in the emergence of motor
control variability. We will address these issues in the con-
text of isometric force production. That is, we will study a
force that is produced by muscles that do not change length
during force production �75�. In contrast to previous studies
that examined isometric force productions on a descriptive
level using various kinds of descriptive measures �such as
variance, correlation functions, Fourier components, statisti-
cal entropy measures �18,19��, we study isometric force pro-
duction from the dynamical systems perspective of human
motor control �35–39�. Accordingly, we will draw our con-
clusions on the basis of an order parameter equation for iso-
metric force production. In order to derive the order param-
eter equation from experimental data, we will exploit drift-
diffusion estimates �40,41� that have been applied to various
systems including turbulence �40–42�, solitons �43,44�, fi-
nancial systems �45,46�, surface patterns �47–49�, traffic
flows �50�, muscle tremor �4�, and heart rate dynamics �51�.
We will focus on the dynamics of force production close to
fixed points defined by required forces. To this end, we will
evaluate bulk data that is centered around mean values and
constitutes approximately 98.8% of the total recorded data.
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Consequently, the dynamics of rare events will not be ad-
dressed in our study. The experimental setup and the data
analysis method will be explained briefly in Sec. II. We will
then present our results in Sec. III.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

A. Experimental setup

Nine healthy subjects from a university population �aged
23 to 33 years, weight 69±12 kg, height 176±11 cm, two
females, seven males� volunteered to participate in the ex-
periment. All subjects described themselves as right-hand
dominant. The subjects were seated in front of a computer
screen with the right forearm on a pad, see Fig. 1 panel �a�.
They were invited to press with the fingertip of the right
index finger on a Scaime force transducer �type F60X10;
accuracy of 0.017%; SCAIME Inc., Annemasse Cedex,
France�. The output of the force transducer was amplified
with a SCXI-1121 bridge amplifier and sampled continu-
ously at a sampling rate of f =1000 Hz using an analog-to-
digital converter �type PCI-MIO-16E-4; National Instru-
ments, Inc., Austin, USA�. For each subject the experiment
consisted of two parts: assessment of the subject’s maximum
voluntary force Fmax and analysis of force variability.

In order to determine the Fmax of a subject, the subject
was instructed to produce as much force as possible with
his/her index finger for a duration of 10 s. The trajectory of
the produced force as a function of time was displayed on the
screen and the maximum value of the trajectory was deter-
mined. Three maximum values were determined by means of
this procedure. The average was used as the subject’s Fmax.

In order to account for the subject-dependent ability to
produce muscular finger forces, produced force is usually
scaled to the Fmax values of subjects. Accordingly, in the
analysis of force variability, subjects were asked to produce
required forces corresponding to particular percentages of
their Fmax values. The percentages will be referred to as force
levels. For example, a force level of 60 means that a subject
was instructed to produce 60% of his or her maximum vol-
untary force over a particular period of time. In order to
assist subjects in performing the task successfully, a horizon-
tal bar on the screen �dashed line in Fig. 1� indicated the
force that subjects had to produce �required force�. A second
horizontal bar �solid line in Fig. 1� indicated the amount of
force that was actually produced by the subjects by pressing
on the force transducer. Consequently, subjects had to match
the feedback signal �solid line in Fig. 1� with the target line
�dashed line in Fig. 1� whose height was adjusted such that it

represented the required force Freg �Freg=Fmax� force level/
100�. Subjects had to perform five force levels L given by
L=10, 20, 40, 60, 70 for a duration of 15 s. Each force level
was tested 15 times leading to a total number of 75 trials per
subject. Those 75 trials were presented in random order. In
order to reduce the effect of fatigue there were five blocks of
15 trials with five minutes breaks �default value� between
two blocks. Upon request subjects could prolong the break to
a maximum of 15 minutes.

All experimental procedures were in accordance with the
Helsinki Declaration of the World Medical Associations, and
approved by the Faculty of Human Movement Sciences of
the Vrije Universiteit, Amsterdam.

B. Data analysis

Data analysis was based on produced relative force de-
fined as

X�t� = 100
F�t�
Fmax

, �1�

where F�t� denotes the produced absolute force. As men-
tioned earlier, the rationale for this procedure is that different
subjects can be compared with each other if the performance
output of a subject is scaled to his or her physical condition,
that is, to the overall ability to produce isometric forces.
Note that in our study, the relative force corresponds to the
percentage of a subject’s maximum voluntary force �e.g., 60
means a subject produces 60% of his or her Fmax�, which is
the reason why we have put the factor 100 into Eq. �1�. In
line with the dynamical systems approach to human motor
control, we assumed that the evolution of X�t� is determined
by a stochastic order parameter equation. In the time-discrete
case the order parameter equation was assumed to corre-
spond to a time-discrete Ito Langevin equation of the form
�52�

X�t + �t� = X�t� + �th�X� + ��tD�X�w�t� �2�

with t=n�t and n=1, . . . ,N. For the linear case see also the
alternative time-discrete representation of Eq. �2� discussed
in Refs. �30,53,54�. Note that �t corresponds to the sample
interval �t=1/ f . Furthermore, w�t� corresponds to a
statistically-independent Gaussian distributed random vari-
able with �w�=0 and �w�n�t�w�n��t��=2�nn�, where �nn� is
the Kronecker symbol. The function h�x� is referred to as the
drift coefficient and reflects the deterministic part of the mo-
tor control system. The function D�x� will be referred to as
the diffusion coefficient and describes the noise source of the
system. As suggested in �40,41�, the drift and diffusion func-
tions were computed from the time-discrete data X�t� using
conditional averages of the form �¯��X�t�=x. From Eq. �2� it
follows that

h�x� =
1

�t
�X�t + �t� − X�t���X�t�=x �3�

and

D�x� =
1

2�t
��X�t + �t� − X�t� − �th�x��2��X�t�=x �4a�

FIG. 1. Experimental setup �a� and a typical trajectory recorded
during the experiment �b�.
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1

2�t
��X�t + �t� − X�t��2��X�t�=x. �4b�

Note that the approximation in Eq. �4b� becomes exact for
�t→0 �52�. In order to avoid concerns about the applicabil-
ity of the approximation to our data set, D�x� was estimated
on the basis of Eq. �4a�. In line with thermodynamical ap-
proaches to nonequilibrium systems �55�, we assumed that
D�x� is a product of a parameter Q and a mobility function
M�x�: D�x�=QM�x�. The parameter Q is usually referred to
as noise amplitude and is often regarded as the counterpart of
the temperature of equilibrium systems. Both in equilibrium
and in nonequilibrium systems the mobility coefficient re-
lates generalized thermodynamic fluxes to generalized ther-
modynamic forces �55�. In our context, by decomposing D
into two factors Q and M we accounted for the working
hypothesis that noise amplitudes may differ considerably be-
tween subjects but relative changes of noise amplitudes due
to change in force requirements should be consistent across
subjects. In line with this working hypothesis, the noise am-
plitude Q was regarded as a subject-dependent scaling factor
just as the maximum voluntary force Fmax. Since Q was re-
garded as a scaling parameter and was by definition invariant
to force requirement �see also Eq. �6� below�, the mobility
parameter M was used to study the impact of force require-
ment on isometric force production. In what follows, we will
refer to Q as the mean noise level of a subject.

In order to compute h�x�, Q and M�x� from X�t�, only the
last ten seconds of a trial were evaluated �i.e., X�t� for t
� �5s ,15s��. In doing so, data analysis was based on the
stationary performance and the transient ramp-up phase of
force built up was discarded. Ensemble averages occurring in
Eqs. �3� and �4� were then replaced by time averages.

Due to the finite length of our data sets �i.e., n
=1, . . . ,N�, the functions h�x� and M�x� were estimated in
two steps �40,43�. In the first step, averages of h�x� and M�x�
over particular intervals Ii= �ai ,bi� were obtained. They will
be denoted by h�i� and M�i�, respectively. In the second step,
statistical analysis and interpolation techniques were used to
estimate h�x� and M�x� on the basis of h�i� and M�i�.

One crucial issue should be pointed out. In order to apply
statistical inference analysis across individual subjects, the
length of the intervals Ii was adjusted to the force variability
of subjects. The interval length was chosen as one standard
deviation of X�t� as found for a particular subject and force
level. Five such intervals �segments� were used:
I1= �−2.5� ,−1.5��, I2= �−1.5� ,−0.5��, I3= �−0.5� ,0.5��,
I4= �0.5� ,1.5��, I5= �1.5� ,2.5��. Consequently, the drift
segments h�i� were computed from

h�i� =
1

�



Ii

h�x�dx . �5�

The mean noise level Q of a given subject was computed
from

Q =
1

25�
�
FL



−2.5�

2.5�

D�x�dx . �6�

As can be seen from Eq. �5�, the parameter Q corresponds to
the average over diffusion coefficients computed from all
five segments Ii and all five force levels L=10, 20, 40, 60,
70. Once the parameter Q was determined, the mobility seg-
ments M�i� were computed from

M�i� =
1

�Q



Ii

D�x�dx . �7�

From the definition of the intervals Ii it follows that h�i�, Q
and M�i� were computed on the basis of approximately
98.8% of the total recorded data. The remaining recorded
data that represents rare events of extremely low or high
forces was not used for the derivation of h�i�, Q, and M�i�.

Statistical hypothesis testing ��=0.05� was carried out on
the subject population. Results were considered as statisti-
cally significant if there was a probability of less then 5% of
a type I error �p�0.05�.

III. RESULTS

A. Performance

Figure 1 �panel �b�� provides an example of a time series
obtained in the experiment. In Fig. 1 the relative force pro-
duced by an individual subject is shown as a function of time
for a typical trial. In this example, the force level was 60.
Clearly visible are the two main properties of the time series.
On the one hand, the time series has a mean close to the
required force level. On the other hand, it exhibits fluctua-
tions. All subjects except subject 8 performed the task suc-
cessfully in all conditions. Subject 8 failed to sustain the
required force at force levels 60 and 70 �i.e., there were
repeated force breakdowns down to forces of zero Newton�.
Therefore, for subject 8 all data concerning the force levels
60 and 70 were excluded from further analysis.

As shown in Fig. 2 the produced mean force of the popu-
lation increased with required force level. This increase was
significant �F�4,38�=60.2, p�0.05�. Likewise, the mean
variance of the population increased with the force require-
ment, see Fig. 3. Also this increase was significant
�F�4,38�=19.0, p�0.05�.

B. Deterministic part

Figure 4 shows the drift segments h�i� obtained for the
force level 40 averaged over the subject population. We
found that the segments h�i� decreased monotonically from
positive to negative values. For all other force levels quali-
tatively similar results were obtained. The decrease of h�i� as
a function of i shown in Fig. 4 for the force requirement of
40 was statistically significant �F�4,40�=7.3, p�0.05�. In
fact, for all other force levels the decrease of h�i� was found
to be significant as well �L=10:F�4,40�=6.4, p�0.05; L
=20:F�4,40�=5.8, p�0.05; L=60:F�4,35�=3.9, p�0.05;
L=70:F�4,35�=3.2, p�0.05�. In view of the monotonic de-
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crease of h�i�, we assumed that h�x� has the form

h�x� = − ��x − xreg� , �8�

where xreg denotes the required force level �i.e., we have
xreg=L�. Consequently, we computed the slope or Lyapunov
exponent � from the segments h�i� using regression analysis.
The � parameters for individual subjects and force levels are
given in Table I. The mean Lyapunov exponent �population
average� as a function of the force level is shown in Fig. 5.
As illustrated in Fig. 5, on average � decreased as a function
of force requirement ��10	�20	�40	�60	�70�. This sig-
nificant decrease �F�4,38�=19.2, p�0.05� of � was ana-
lyzed further using t tests �one-tailed; LSD design� between
consecutive force levels. Significant decreases were found
between the force levels 10 and 20 �t�38�=4.3, p�0.05� and
the force levels 20 and 40 �t�38�=2.4, p�0.05�. The de-
crease in � from 40 to 60 was not significant, nor was the
decrease in � from 60 to 70.

C. Noise

The mean noise levels Q computed from Eq. �6� for the
subjects that participated in our experiment are shown in Fig.
6. Figure 6 also shows the maximum voluntary force �Fmax�
values and, consequently, illustrates the two fundamental
subject-dependent parameters discussed so far. However, as
we will show in Sec. III E the two parameters Fmax and Q
were correlated.

Figure 7 depicts the mean segments M�i� �population av-
erages� obtained for force level 40 as computed from Eq. �7�.
The small variations shown in Fig. 7 were not significant.
Qualitatively similar figures were obtained for all other force
levels. Again, for all other force levels variations between
segments M�i� were not statistically significant. Conse-
quently, for each force level M�x� could be approximated by
a constant mobility coefficient M given by the average M
=�iM�i� /5. The M values for all subjects and force levels
are reported in Table I. As shown in Fig. 8, we found that the
mobility parameters depended on the force level. Figure 8
depicts population averages of the M parameters for all force
requirements. The population averages increased with force
�M10�M20�M40�M60�M70�. The increase was signifi-
cant �F�4,38�=23.4, p�0.05�. t tests �one-tailed; LSD de-
sign� between consecutive force levels showed that increases
between 10 and 20 % force requirements �t�38�=1.7, p
	0.05� and between 20 and 40 % force requirements
�t�38�=1.7, p	0.05� were significant. In contrast, increases
between 40% and 60% force requirements and between 60
and 70% force requirements were not significant. In sum, the
diffusion coefficient D�x� was found to be of the form

D�x� = QM . �9�

Equation �9� states that for each force level the diffusion
coefficient D�x� is the product of an overall noise level Q,
which is independent of the force requirement, and a mean
mobility parameter M, which increases as a function of the
force requirement.

FIG. 2. Mean produced force F as a function of force level
�population averages�. Here and in subsequent figures error bars
correspond to one standard deviation.

FIG. 3. Mean variance of the relative force X as a function of
force level �population averages�.

FIG. 4. Ordinate: drift segments h�i�=�−1�Ii
h�x� dx for force

level 40 �subject-individual 15-trial averages�. Abscissa: centers of
segment intervals Ii �i=1,2 ,3 ,4 ,5� at x= 
−2� ,−� ,0 ,� ,2��. The
slope of the regression line equals the � coefficient shown in Fig. 5.
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D. Self-consistency test

After having determined the drift and diffusion coeffi-
cients h�x� and D�x� of our Langevin model �2�, the question
arose to what extent the model reproduced the observed data.
More precisely, we examined whether or not the time-
continuous version of Eq. �2� was consistent with the experi-
mental data. Applying the limiting procedure �t→0 to Eq.
�2� and using the explicit expressions for h�x� and D�x� as
given by Eqs. �8� and �9�, the time-continuous Langevin
model for isometric force production reads

d

dt
X = − ��X�t� − xreg� + �QM
�t� . �10�

Here, 
�t� is a Langevin force �52� with �
�=0 and
�
�t�
�t���=2��t− t��, where ��¯� denotes the Dirac delta
function. The Langevin model �10� predicts a variance of

�2 =
QM

�
. �11�

The model-based variance �11� was computed from the Q
values shown in Fig. 6 and the M and � values reported in

TABLE I. Lyapunov exponents � and dimensionless mobility coefficients M for individual subjects and force levels

Subject ��1/s� M

10 20 40 60 70 10 20 40 60 70

1 144.6 49.6 11.1 6.3 7.1 0.88 0.97 1.02 1.07 1.05

�26.5� �5.2� �0.8� �0.6� �0.7� �0.07� �0.02� �0.02� �0.07� �0.05�
2 172.4 107.9 57.1 12.4 11.1 0.92 0.96 1.00 1.05 1.08

�16.3� �13.2� �5.3� �1.6� �1.3� �0.07� �0.03� �0.02� �0.03� �0.05�
3 316.5 129.3 15.0 5.5 2.9 0.86 0.92 1.01 1.12 1.09

�14.1� �12.7� �2.0� �0.3� �0.4� �0.06� �0.03� �0.04� �0.08� �0.06�
4 166.0 39.5 15.6 5.3 3.8 0.94 0.99 0.99 1.03 1.06

�12.9� �10.8� �2.6� �0.5� �0.1� �0.05� �0.03� �0.02� �0.02� �0.02�
5 79.7 47.5 25.2 6.8 7.3 0.92 0.95 0.94 1.10 1.09

�22.4� �10.4� �2.4� �0.8� �0.6� �0.05� �0.04� �0.02� �0.17� �0.15�
6 188.7 78.8 16.1 3.9 3.1 0.89 0.93 0.98 1.09 1.10

�28.0� �9.7� �2.6� �0.6� �0.3� �0.02� �0.06� �0.03� �0.08� �0.01�
7 66.1 31.2 6.8 4.3 3.4 0.88 0.95 0.97 1.09 1.13

�9.8� �1.9� �0.5� �0.3� �0.6� �0.01� �0.05� �0.02� �0.08� �0.12�
8 73.9 39.9 5.3 0.96 0.96 1.09

�10.9� �5.7� �0.8� �0.06� �0.02� �0.18�
9 100.7 45.2 10.3 2.4 2.2 0.84 0.88 0.88 1.07 1.32

�9.8� �8.3� �1.5� �0.1� �0.2� �0.02� �0.04� �0.02� �0.20� �0.54�

FIG. 5. Mean Lyapunov exponent � as a function of force level
�population averages�.

FIG. 6. Maximum voluntary force Fmax �black bars� and mean
noise level Q �white bars�.
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Table I. The so obtained population mean values of the �2

values are shown in Fig. 9 �white bars� and compared with
the respective experimentally observed mean values �black
bars�. We found that predicted and observed variances were
of the same order of magnitude. t tests showed that the pre-
dicted variances were not significantly different from the ob-
served variances. That is, we found that the time-continuous
Langevin model �10� provides a good approximative descrip-
tion for isometric force production.

E. Nature of the noise levels Q

In order to check whether the subject-dependent param-
eters Fmax and Q were correlated, we rearranged the subjects
on the horizontal axis of Fig. 6 according to their Fmax val-
ues. The result is shown in Fig. 10 and clearly reveals a
negative correlation between Fmax and Q. In fact, we found a
correlation coefficient � of �=−0.94. In order to explain this
correlation, we hypothesized that the mean noise level did

not scale with the maximum voluntary force. Accordingly,
the mean noise level had to be computed directly from the
produced forces F�t� and not from the relative forces X�t�
�see also Eq. �1��. If this hypothesis would be correct, we
would get q=Fmax

2 Q. If q reflects a subject-independent con-
stant, then Q and Fmax must be negatively correlated. To test
the hypothesis, we computed q from

q =
1

25�
�
FL



−2.5�

2.5�

D�F�dF , �12�

just as we did for Q �see Eq. �6��. Figure 11 depicts the
obtained q values. All q values were centered around a popu-
lation mean value of q̄=22000�±1000� N2/s. There was a
weak tendency for q to decrease with decreasing Fmax �we
found �q=q / q̄�0.007Fmax; compare also Figs. 10 and 11�.
However, this tendency and the differences between
q-parameters were not statistically significant. This result

FIG. 7. Ordinate: dimensionless mobility segments M�i�
= ��Q�−1�Ii

D�x� dx for force level 40 �population averages�. Ab-
scissa: centers of segment intervals Ii �i=1,2 ,3 ,4 ,5� at x= 
−2� ,
−� ,0 ,� ,2��.

FIG. 8. Dimensionless mean mobility coefficient M as a func-
tion of force level �population averages�.

FIG. 9. Mean variance as a function of force level �population
averages�. Experimental results �black bars� versus predictions
made by the Langevin model �10� �white bars�.

FIG. 10. Subject parameters Fmax �black bars� and Q �white
bars� as in Fig. 6 but with subjects sorted according to decreasing
parameters Fmax.
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supported our hypothesis of a subject-independent noise
level that did not scale with Fmax values.

Note that expressing the noise level in terms of Q or q is
just a matter of choosing different units. Therefore, all pre-
vious arguments given in Secs. III C and III D concerning
the mobility coefficient M and the appropriateness of the
time-continuous Langevin model would remain valid if we
would replace Q by q / �Fmax�2. In other words, the analyses
in the previous sections in combination with the finding of a
subject-independent constant q suggested that the Langevin
equation of isometric force production should read

d

dt
X = − ��X�t� − xreg� +

1

Fmax

�qM
�t� , �13�

where q is a parameter that did not change significantly
across subjects.

F. Model plausibility and generalizations

For a given force requirement the Langevin model �10�
describes an Ornstein-Uhlenbeck process �52�. We would
like to discuss now under which conditions it is also plau-
sible to assume that isometric force production is described
by an Ornstein-Uhlenbeck process and how the model
should be generalized if these conditions are violated.

1. Multiplicative noise and power laws

First of all, the Ornstein-Uhlenbeck model predicts that
produced forces abide a Gaussian distribution. In order to
check this prediction, we transformed produced relative
forces X into random variables with vanishing mean and unit
variance as follows: X→z= �X− �X�� /�. We checked whether
the respective rescaled probability densities P�z� involved
the characteristic parabolic potentials z2 of Gaussian �i.e.,
normal� distributions. To this end, we plotted the quantity

�z�=�−2 ln�P�z� / Pmax� with Pmax= P�0� versus z. For
Gaussian distributions there would be a linear relationship

�z. For the forces considered in our study �force range

defined by 2.5 standard deviations around required forces�
the empirical distributions P�z� clearly exhibited such a lin-
ear relationship 
�z, see Fig. 12 �all R2 values of linear
regression analysis were larger than 0.99�.

In general, we would expect to observe non-Gaussian dis-
tributions �e.g., power-law distributions �31,32�� related to
nonlinear drift terms h�x� and multiplicative noise terms
D�x�. Nonlinear drift terms would reveal more specific de-
tails of the deterministic processes involved in isometric
force production. Multiplicative noise would reveal the im-
pacts of fluctuating parameters and fluctuating external driv-
ing forces. In order to uncover non-Gaussian distributions
with power-law tails and other kinds of non-Gaussian tails
from experimental data a statistics appropriate for rare events
is needed. Our experimental design was tailored to investi-
gate the statistics and stochastic dynamics of isometric force
production close to fixed points defined by required forces.
Around these fixed points, however, potential impacts of
nonlinearities and multiplicative noise terms should become
small. Therefore, it is plausible to assume that a linear drift
model with an additive noise term provides an appropriate
description—an assumption that is in line with our experi-
mental findings. Changing the experimental protocol in order
to study isometrically produced force that exhibits more un-
likely events would probably require to generalize the
Ornstein-Uhlenbeck model �10� to incorporate nonlinear
drifts and multiplicative noise terms, see Table II.

2. Time delays

The Langevin model �10� does not account for time-
delayed neurophysiological feedback loops. Such feedback

FIG. 11. Mean noise level q as computed from Eq. �12� for
individual subjects.

FIG. 12. Circles: 
�z�=�−2ln�P�z� / Pmax� versus z of the res-
caled force distribution P�z� �with vanishing mean and variance
equal to 1� for several force levels L. Solid lines: regression lines.
Gaussian distributions would satisfy 
�z�=�z with �=1. From bot-
tom to top: L=10, 20, 40, 60, 70. Graphs are shifted by 0.5 along
the y axis for the sake of clarity. Slope parameters � and 95%
confidence intervals �10=1.00 �0.98, 1.02�, �20=1.03 �1.01, 1.04�,
�40=1.02 �1.00, 1.04�, �60=1.00 �0.98, 1.02�, �70=1.03
�1.02, 1.04�. All R2 values were larger than 0.99. Rescaled force
distributions P�z� were computed using the MATLAB probability
density estimator.
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loops can be modeled by means of time-delayed Langevin
equations �9,15,16�. Time-delayed feedback crucially deter-
mines the transient dynamics of a system. In the stationary
linear case, however, we can deal with feedback loops in-
volving small neurophysiological time delays � by rescaling
the model parameters of nondelayed models. For example,
the time-delayed generalization of Eq. �10� given by dX /dt
=−�d�X�t−��−xreg�+�QdM
�t� can be mapped to Eq. �10�
by putting �d=��1+��� �56,57�. Moreover, as shown in Ref.
�57� for arbitrary time delays � we have Qd=Q, see also Fig.
13. In sum, we see that due to this rescaling procedure the
Lyapunov exponent �d of the time-delayed model for isomet-
ric force production is smaller than the respective parameter
of the Ornstein-Uhlenbeck model �10�, while the diffusion
coefficient is not affected by the length of the time delay, see
Table II.

In order to study in more detail the impacts of time delays
on isometric force production, the experimental design de-
scribed in Sec. II A could be modified and the time delay of
the visual feedback loop could be manipulated experimen-
tally �17,58,59�. In particular, in such experimental studies
isometric force production under the impact of relatively
large time delays could be examined. In this case, however,
the Langevin model �10� should be replaced by the afore-
mentioned time-delayed version because for large time de-

lays the rescaling approach listed in Table II for the
Lyapunov exponent � fails.

3. Colored noise

The Langevin approach centered around Eq. �10� involves
a �-correlated fluctuating force. �-correlated fluctuating
forces are useful approximations of fluctuating forces involv-
ing short but finite correlation times �colored noise� �60�. In
some examples, however, it has been argued that human mo-
tor control systems are driven by colored rather than
�-correlated noise �9,15�. Although the Ornstein-Uhlenbeck
model �10� involves �-correlated noise, it can account to a
certain extent for colored noise. As shown in Refs. �61–63�,
colored noise models involving short correlation times can
be approximated by means of effective Langevin equations
�and Fokker-Planck equations� involving �-correlated fluctu-
ating forces. Such an approach also holds for the data analy-
sis method discussed in Sec. II B. For example, let us con-
sider the linear colored noise model dX /dt=−�c�X�t�−xreg�
+�QcM��t� involving a fluctuating force ��t� with correlation
time � �76�. In this case a detailed calculation shows that the
parameters �c and Qccan be obtained by rescaling the param-
eters � and Q occurring in the Ornstein-Uhlenbeck model
�10� such as �c=� �64� and Qc=�Q /�t, see Fig. 13 and
Table II. That is, in the presence of colored noise the actual
overall noise amplitude of the motor control system is larger
than estimated on the basis of the Ornstein-Uhlenbeck model
�10�. However, the Lyapunov exponent is not affected by the
correlation time of the fluctuating force.

4. Qualitative impacts of time delays and noise correlation times

As indicated in Table II, possible impacts of �short� time
delays and colored noise sources will result in quantitative
changes but not in qualitative changes provided that time
delays and noise correlation times do not depend on the re-
quired force. For example, the overall noise amplitudes Qd
and Qc will behave qualitatively like the overall noise am-
plitude Q of the Ornstein-Uhlenbeck model �10�. That is,
they will not depend on the required force.

5. Plausibility of the Ornstein-Uhlenbeck model (10)

In closing these considerations, we conclude that the
Ornstein-Uhlenbeck model �10� is a plausible stochastic
model provided that isometric force is produced close to a
required force and that time delays and noise correlation
times can be neglected. In addition, �short� neurophysiologi-
cal time delays and noise correlation times can be addressed
by means of the Ornstein-Uhlenbeck model �10� using pa-
rameter rescaling techniques. The model �10� probably needs
to be generalized if unlikely events and large time delays

TABLE II. Generalizations and rescaling techniques related to the Ornstein-Uhlenbeck model �10�

Generalizations Rescaling

Nonlinear drift Multiplicative noise Time delay � Noise correlation time �

−�x→h�x� M→M�X� �d=��1+��� �c=�

Qd=Q Qc= �
�tQ

FIG. 13. Q /Qd �top graph� and Q /Qc �bottom graph� as func-
tions of the relative time delay and the relative correlation time
� /�t, respectively. Both theoretical �solid lines� and numerical
�circles� results are shown. Top: Q /Qd=1 �theory�;
dX /dt=−�d�X�t−��−xreg�+�QdM
�t� �numerical model�. Bottom:
Q /Qd=�t /� �theory� and dX /dt=−�c�X�t�−xreg�+�QcM��t� with
d��t� /dt=−�−1���t�−�2
�t�� �numerical model�. Other simulation
parameters �top and bottom�: xreg=0, �d=�c=M =1. Ratios Q /Qd,
Q /Qc, � /�t are shown as dimensionless quantities. Numerics as in
Ref. �52�.
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�e.g., externally imposed delay times� play important roles. It
also needs to be revised if the explicit objective is to examine
to which extent colored noise sources are involved in isomet-
ric force production.

IV. CONCLUSIONS

We derived a stochastic order parameter equation for the
relative force X�t� produced in an isometric force production
task. To this end, we modified a drift-diffusion estimation
technique proposed earlier �40,41� such that standard statis-
tical inference techniques could be readily applied in the data
analysis. From the obtained order parameter equation we
could draw several conclusions.

We found that force variability in isometric force produc-
tion can be explained by a time-continuous Ito-Langevin
equation. We found that both drift and diffusion coefficients
of the Langevin model depended on the averaged produced
force. Since the drift coefficient reflects deterministic pro-
cesses and the diffusion coefficient reflects random pro-
cesses, we conclude that force variability is the result of both
deterministic and random processes.

In addition, we identified the structure of the deterministic
and random components leading to force variability. The de-
terministic part can be modeled as a linear control loop,
whereas the random part corresponds to a noise source that is
additive �i.e., unstructured� for every force level. In other
words, for a fixed force requirement the structure of the
Langevin model describes an Ornstein-Uhlenbeck process
�52�. As a result, for a fixed force requirement human iso-
metric force production satisfies an optimization principle
�55�. It minimizes the free energy FE given by the functional

FE =
�

2
��X − xreq�2� − QMS , �14�

where S is the Boltzmann-Gibbs-Shannon entropy
�S=−�P ln Pdx with P�x� the stationary distribution of the
Ornstein-Uhlenbeck process� and the expression U
=0.5���X−xreq�2� can be regarded as a generalized internal
energy of the human motor control system. That is, our
model links the dynamical systems approach of motor con-
trol �35–39� to the optimization theory of motor control
�65,66�. To illustrate this property, we computed the pseudot-
hermodynamic variables U and F and the entropy term QMS
from the � values reported in Table I and the experimentally
observed variances �2. According to the Ornstein-Uhlenbeck
model �10�, the respective expressions are given by

U =
�

2
�2,

QMS =
QM

2

ln�2��2� + 1� ,

FE =
�

2
�2 −

QM

2

ln�2��2� + 1� . �15�

The results are shown in Fig. 14. The internal energy did not
vary much with the force level. In contrast, the entropy con-

tribution increased, whereas the free energy decreased with
required force. Obviously, the decrease of the free energy is
due to the increase of the entropy contribution.

We found that the noise amplitude of the random part
increased as a function of the required force. That is, the
noise amplitude significantly depended on the motor perfor-
mance and was a function of the mean force output. A struc-
tural interpretation of this noise increase can be given in
terms of the size principle of human force production
�67–69�. Accordingly, if the amount of force produced by a
muscle increases, then both the number of activated motor
units and the averaged size of the activated motor units in-
creases. If every single motor unit involves a particular finite
amount of noise, then the overall noise will increase with the
required force �77�. As mentioned in the Introduction, there
are various other motor control systems that have been iden-
tified recently as multiplicative noise systems. In these stud-
ies noise amplitudes were found that depend on the state
variables of the respective systems. It is important to realize
that in our study the noise amplitude D=QM did not depend
on the state variable X but on xreg. That is, according to our
analysis isometric force production involves for any fixed
force level xreg an additive noise force �see also Sec. III F�.
Changes of the control parameter, that is, the force level xreg,
however, induced changes of the noise amplitude.

As discussed in Sec. III E, a more detailed analysis of our
experimental data revealed that the overall noise levels of
our subjects did not scale with the maximum voluntary
forces produced by the subjects. In general, it is reasonable
to assume that force variability will depend both on the
physical condition of a subject and on the magnitude of the
actually produced force. In contrast, our data clearly showed
that in the case of isometric force production the physical
condition as indexed by the maximum voluntary force was
irrelevant �there was a subject-independent parameter q�,
whereas the required force output was a relevant quantity
�the mobility M increased as a function of required force�. In
view of a subject-independent overall noise level q, which is
related to the absolute force F�t� but not to the relative force

FIG. 14. Pseudothermodynamic variables �population averages�
for different force levels as computed from Eq. �15�: internal energy
U �black�, entropy term QMS �white�, and free energy FE �grey�.
Note that we have FE=U−QMS.
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X�t�, one may argue that the order parameter equation of
isometric force production should be written in terms of F�t�
rather than in terms of X�t�. Using Eq. �1�, we can write Eq.
�13� as

d

dt
F = − ��F�t� − Freq� + �q*M
�t� , �16�

where Freq is the required absolute force �see Sec. II A�. Here
q* is given by q*=q /104 because of the scaling factor in Eq.
�1�. Since q is in the order of 2�104 N2/s �see Sec. III E�,
we see that q* is in the order of 2 N2/s. One may pose the
question which of the two order parameter equations �Eq.
�13� or �16�� is the relevant order parameter equation for
isometric force production. Future experimental and theoret-
ical studies may elucidate this point. For the time being, we
just would like to point out that several previous studies on
isometric force production were entirely based on the

analysis of relative forces X�t�. That is, in those studies it
was tacitly assumed that both deterministic and random
components of isometric force production scale with Fmax
values. The present findings suggest that the results in those
studies should be interpreted with caution.

Returning to our very first remark in this section, we dem-
onstrated in the present study that stochastic order parameter
equations of human motor control systems can be derived
using drift-diffusion estimates in such a way that quantitative
statements can be made and corresponding hypotheses can
be tested statistically. Several studies recently showed at
least qualitatively that the drift-diffusion estimation tech-
nique can be generalized to account for higher-dimensional
oscillatory motor control systems �4�, time delays �70–72�,
couplings between microsystems giving rise to macroscopic
order parameter dynamics �55,73�, and microsystem
couplings involving time delays �74�. Since time delays as
well as microsystem couplings �e.g., couplings between neu-
ral units or motor units or cross-bridge couplings in muscles�
are likely to play crucial roles in human motor control, future
efforts may be devoted to generalizing the theoretical and
empirical results of the present study. In such efforts gener-
alized models for isometric force production as discussed in
Sec. III F may be addressed.
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